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ABSTRACT 

This work deals with the modeling of the uncertainty through different scales of composite 
materials. Three different scales are investigated: micro (fibres and matrix), meso (ply) and 
macro (laminate). Homogenization methods are used on the micro and meso scales. The 
macro scale is modeled using laminates theory. The main result shows that the uncertainty, 
large at the micro-scale, becomes small in meso-scale because of mean effect. On the other 
way, dispersion of high stress zones on meso scale is demonstrated. 
In this study, virtual materials have been generated in order to obtain mechanical distribution.  
 

1. INTRODUCTION 
Composite materials present mechanical variations due to their natural morphology. These 
variations are very dependent on the scale. Thus, in laminated composite, three scales are 
generally considered: i)  micro: fibres and matrix, ii) meso: a ply, iii) macro: several plies 
(laminate). 
The microscopic nature of the elementary components (fibres and matrix) can imply a 
variability of their properties because it is very difficult to control the manufacturing 
processes. For example, composites manufactured from the biomass, have a variability of 
some pourcents at the structural scale, whereas the fibres (hemp, flax,…) have a very strong 
dispersion of their properties [1]. 
The objective of this work is to show that the strong dispersion of the properties of the 
elementary components is strongly reduced by the scalings. In this study, a multi-scale 
modelling (micro, meso and macro) is developed in order to better understand and describe 
the implied mechanisms. This method will make it possible to optimize the behavior of 
materials. 
 
2. METHODOLOGY 
The method consists in integrating on a higher scale the results of the lower scale in order to 
obtain a structural material which depends on the microscopic behavior. The latter is built 
from morphological considerations (distribution of fibres in matrix). Cells of type 4, 5, 6 and 
7 are then considered, with type i means i fibres surrounding a central one (see section 3). 
Their mechanical behavior is  calculated numerically (FEM) by a homogenization method. 
On the meso-scale, various kinds of cells highlighted from morphological analysis (4/5/6/7 
fibres cells) are randomly distributed with respect to their number. For each kind of cells, 
homogeneized mechanical properties calculated on micro-scale are affected. Finally, the 
mechanical properties of the ply (meso-scale) are then estimated by homogenization method 
using FEM. 



At the macro scale, the various plies are stacked in order to obtain a laminated composite. The 
objective of this scale is to show that an angular variation of plies can influence the 
mechanical properties of the laminate. This variation will be strongly dependent on the 
number of plies and the degree of misalignment. 
 
3. MICRO-SCALE 
3.1 Morphological analysis 
A morphological study has been done in order to describe, as well as possible, the distribution 
of fibres in cells. To this end, a micrography of a composite material with carbon fibres T800 
was analyzed, figure 1-a. A thresholding filter allowing to transform fibres into particles was 
applied, figure 1-b. Figure 1-c gives an example of cell composed of 6 fibres around a central 
one. 

 
 
 
 
  
 

     Example of  type 6 cell. 
 

 (a)     (b)               (c)  
 
Figure 1: (a) micrography, b) transformation of fibres into particles and c) cell. 
 
Three parameters are analyzed in order to estimate realistic cell, Figure 1-c: i) the number of 
close fibres, ii) their distance to the central fibre, iii) the angle between two consecutive fibres 
surrounding central fibre. The following figure presents the distribution of cells for a given  
number of close fibres, figure 2. 
 

 
Figure 2: Distribution of the number of fibres surrounding a fibre. 
 
3.2 Geometry and meshing of the cells 
Following the morphological analysis of the UD composite, four cells were retained. These 
cells are respectively composed of  4, 5, 6 and 7 carbon fibres and an epoxy resin matrix. 
Each cell is modelled with ANSYS package by taking as random variables the number and 
the spatial distribution of fibres (see previous section), the diameter of fibres, the material 
properties. Table 1 presents the various variables used in models. 

Variables Law of 
probability 

Mean Standard 
deviation 

Coefficient of 
variation  (%) 

Ef  uniform 73 (GPa) 8.43 (GPa) 11.5 

Em uniform 3.45 (GPa) 0.40 (GPa) 11.5 



vf uniform 0.22 0.025 11.5 

vm uniform 0.3 0.035 11.5 

Ø of fibres uniform 10 (µm) 0.58 (µm) 5.8 

Table 1: Definitions of the random variables. 
 
(Ef, Em) and (vf, vm) represent the young modulus and the poisson ratio for fibre and  matrix, 
respectively. 
The cells are parallelepipeds of identical length ly  and width  lx  (32 µm). The thickness lz  is 
set to 3 µm. 
The fibres are spatially distributed using the Random Sequential Adsorption algorithm (RSA) 
[2]. This algorithm is used for generating microstructure in the X-Y plane, figure 3. The first 
step in this algorithm is to generate, so unifom, coordinates (x1, y1) from center of the straight 
section of the first fibre. In order to avoid that a fibre cuts the cell edges, the four following 
relations must be verified simultaneously: 

δ−−≤ 110 rx   xlrx ≤++ δ11  

δ−−≤ 110 ry  ylry ≤++ δ11  

where r1 and δ are the radius of the first fibre and tolerance necessary to obtain a regular 
mesh, respectively. 
If these criteria are not satisfied, a new pair (x1, y1) is generated. In the favourable case, a new 
pair (x2, y2) is generated by verifying that the new fibre does not overlap the previous fibres 
and it does not cut the cell edges. If there is no overlap, a new coordinate pair is generated. 
This process is repeated until the number of fibres in the cell and the number of cells are met. 
Figure 3 shows an example of cell. 

Figure 3: Meshing example of a cell. 
 
The various cells are meshed with ten nodes tetrahedral elements (solid92). After a 
convergence study, the size of the elements has been fixed to 0.75 µm. Now, the objective is 
to estimate the equivalent stiffnesses of every cell. To this end, a homogenization method 
based on the Hill lemma [3,4] was implemented in ANSYS. This method requires to perform 
21 cases of homogenous load so that all the terms of the stiffness matrix could be identified. 
The results are presented in the following section. 
 
3.4 Results 
Each type of cell was generated several times to obtain the distribution of micro

ijC . Figure 4 

shows the lines of Henry obtained during the estimate of microC12
 for a different number of 

simulation. 
 



 
(a) (b) 

Figure 2 : Distribution of microC12   for a two numbers of simulations (N): N=100 (a), N=963 (b). 
 
It is noted that the distribution of microC12

 tends towards Gaussian when the number of 
simulations increases. For reasons of computing time, the number of simulations is fixed to 
963 for all calculations of micro

ijC . 

Figure 5 presents the distribution of microC33  for cells with 5 fibres as well as the Henry’s line. 

 

 
 

Figure 3. Distribution of microC33  (a) and Henry’s line (b).  

 
It is noted that this distribution is almost Gaussian. This remark is also valid for the other 
terms of the stiffness matrix. Moreover, 12 components of the stiffness matrix have 
distributions of null mean and standard deviation lower than 0.01 GPa, confirming the 
transverse isotropy of the cell. Table 2 presents means and standard deviations for several 
stiffnesses obtained from the cell with 5 fibres. 
 

Stiffness  Mean  σ  Stiffness  Mean  σ  

microC11  24.17 1.78 microC33  32.87 2.19 

microC12  6.25 0.79 microC 44  10.85 7.18 

(a) (b)



microC13  7.14 0.81 microC55  10.85 7.18 

microC22  24.17 1.78 microC66  8.96 6.19 

microC23  7.14 0.81  

 
Table 2: Mean and standard deviation of micro

ijC  (GPa) for 5 fibres cells.  

It is noted that the relations of transverse isotropy are well checked. 
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The continuation of the method consists in using previous stiffness distribution to model the 
mechanical behavior of a ply (meso-scale). The following section describes the methodology. 
 
4. MESO-SCALE 
4.1 Meso-scale requirements 
Looking at what became micro-scale mechanical properties dispersion on meso-scale is the  
dimensions 6 mm x 6 mm x 0.3 mm, Figure 6. It is made of volumes representing the 
homogeneized cells described on the microscopic scale. These cells are organized in way to 
satisfy as well as possible the physical requirements :  
 

• the cells are randomly distributed following the distribution given in Figure 2, and 
issued from a morphological analysis, 

• the ‘match’ volume generated by extending cells along y dimension, Figure 6, contains 
cells  of comparable nature including for each of them a constant number of fibres, 

• the continuity of fibres will be satisfied for two adjacent cells. 

 
Figure 6: Meso-scale modelisation : ply and ‘match’ volume. 
 
4.2 Generation of the cells 
In present work, only the first two requirements are satisfied. The cells are generated using 
Ansys software in the following way. 

1) only a section of cells, Figure 7, is randomly built respecting the distribution of 
Figure 2.  
2) cells are extended along y direction to give volumes as described in Figure 6. Each of 
them contains cells of comparable nature which are selected and gathered. 
3) the mechanical properties are finally affected by nature of cells following the 
distributions obtained at the microscopic scale. 

 



The ply (or layer) is meshed with 3 FE in the thickness and 60 FE along the edges. The 
various cells are then meshed using the finite elements hexahedric with 20 nodes SOLID 182 
available in Ansys. With these elements, the mechanical properties can be directly introduced 
as micro

ijC  elastic moduli. 

 
  
a) Random distribution of cells in the first section   b) Random distribution of cells in the ply 

Figure 7: Distribution of cells. 

 
4.3 Elastic modulus at meso-scale 
The next step consists in estimating meso

ijC , equivalent elastic modulus for the ply. They are 

obtained numerically using the homogenization method based on the Hill's lemma [3,4], see 
previous section. The procedure, illustrated on Figure 8, is repeated several times to involve 
different arrangement of cells while respecting physical requirements. meso

ijC  distributions can 

then be obtained. 



 
 
Figure 8: Scaling procedure from microscale to meso-scale. 
 
4.4 Results 
About two hundred calculations of meso

ijC  have been performed using FE method, each of 

them consuming near one hour of CPU time. Table 3 presents meso
ijC  mean value, standard 

deviation and coefficient of variation obtained from this sample. Obviously, a significant 
reduction of variability at the time of scaling from micro scale to meso-scale is shown by 
these first results.  

ijC  Mean Standard deviation Coefficient of 
variation  (%) 

microC11  24170 1780 7.3 
mesoC11  33000 63 1.91 

microC22  24170 1780 7.3 
mesoC22  33100 64 1.95 

microC33  32870 2190 6.7 



mesoC33  40400 71 1.76 

Table 3: Comparison of ijC  modulus at meso and micro scales (MPa). 

 
In addition, a tensile test has been performed on the ply for different arrangements of cells.  
Stress field analysis shows that high stresses zones randomly located appear, Figure 9. This is 
a first explanation why the elastic properties of composite materials are often reproducible 
whereas those with rupture are very dispersed. 
 

 
Figure 9: High stresses zones for a tensile test. 
 
5. Macro scale 
The multilayered structure made up of stacked layers is now considered. On this macro scale, 
the angle of orientation for a ply is one of the important sources of variability in laminated 
material. The objective of this part is to show that the dispersion of the mechanical behavior 
of the laminate is strongly related to the amplitude of variation of the angle but also to the 
number of plies considered. The present laminate is composed of unidirectional plies in order 
to obtain ideally a material for which all the fibres are directed in the same direction. The 
estimate of the longitudinal Young modulus LE  is carried out using the laminate theory. 
For present simulations, from 1 to 10 plies have been considered with an angular variation for 
each one of 5°, 10° and 20°. The evolution of LE 's coefficient of variation according to the 
number of plies is plotted on Figure 10 for different angular variations.  
 

 
 

Figure 10. Evolution of LE 's coefficient of variation. 



 
For a given angular variation, reproducibility of results when the number of plies increases 
can be underlined. Indeed, the probability that the whole of the plies is on average to be 
shifted of 5°, 10° or 20° is all the more weak as the number of plies increases.  
The next stage of modeling will integrate, moreover, the variability of meso

ijC  calculated on the 

meso-scale. 
 
6. Conclusions 
A multi-scaled approach to see the evolution of the mechanical properties's dispersion from 
micro-scale to macro-scale has been developped in this study. 
 
It reveals that significant dispersion observed on micro-scale (cell made up of fibre/matrix) 
for composite materials is largely reduced on meso-scale (ply made up of previous cells) due 
to the great number of cells distributed in the volume of a ply. On the other hand, high 
dispersion for zones with stress concentration has been demonstrated. 
In addition, it has been proved that the effect of bad orientation of plies for a laminate (macro-
scale) was compensated by the number of plies used : more there are plies, minus is the effect. 
 
Finally, this study confirms that the elastic properties of composite materials are often 
reproducible whereas those with rupture are very dispersed. This last point, of great interest, 
will be largely investigated in future works. 
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